
Click Fraud Resistant Methods for Learning
Click-Through Rates

Nicole Immorlica, Kamal Jain, Mohammad Mahdian, and Kunal Talwar

Microsoft Research, Redmond, WA, USA,
{nickle,kamalj,mahdian,kunal}@microsoft.com

Abstract. In pay-per-click online advertising systems like Google, Over-
ture, or MSN, advertisers are charged for their ads only when a user clicks
on the ad. While these systems have many advantages over other meth-
ods of selling online ads, they suffer from one major drawback. They are
highly susceptible to a particular style of fraudulent attack called click
fraud. Click fraud happens when an advertiser or service provider gen-
erates clicks on an ad with the sole intent of increasing the payment of
the advertiser. Leaders in the pay-per-click marketplace have identified
click fraud as the most significant threat to their business model. We
demonstrate that a particular class of learning algorithms, called click-
based algorithms, are resistant to click fraud in some sense. We focus
on a simple situation in which there is just one ad slot, and show that
fraudulent clicks can not increase the expected payment per impression
by more than o(1) in a click-based algorithm. Conversely, we show that
other common learning algorithms are vulnerable to fraudulent attacks.

1 Introduction

The Internet is probably the most important technological creation of our times.
It provides many immensely useful services to the masses for free, including such
essentials as web portals, web email and web search. These services are expen-
sive to maintain and depend upon advertisement revenue to remain free. Many
services such as Google, Overture, and certain components of MSN, generate
advertisement revenue by selling clicks. In these pay-per-click systems, an adver-
tiser is charged only when a user clicks on his ad.

A scenario of particular concern for service providers and advertisers in pay-
per-click markets is click fraud – the practice of gaming the system by creating
fraudulent clicks, usually with the intent of increasing the payment of the adver-
tiser. As each click can cost on the order of $1, it does not take many fraudulent
clicks to generate a large bill. Just a million fraudulent clicks, generated per-
haps by a simple script, can cost the advertiser $1,000,000, easily exhausting his
budget. Fraudulent behavior threatens the very existence of the pay-per-click ad-
vertising market and has consequently become a subject of great concern [5, 7, 8].
Recently, Google CFO George Reyes said, in regards to the click fraud problem,
that “I think something has to be done about this really, really quickly, because
I think, potentially, it threatens our business model.” [8].

https://ppcprotect.com/

A variety of proposals for reducing click fraud have surfaced. Most service
providers currently approach the problem of click fraud by attempting to auto-
matically recognize fraudulent clicks and discount them. Fraudulent clicks are
recognized by machine learning algorithms, which use information regarding the
navigational behavior of users to try and distinguish between human and robot-
generated clicks. Such techniques require large datasets to train the learning
methods, have high classification error, and are at the mercy of the “wisdom”
of the scammers. Recent tricks, like using cheap labor in India to generate these
fraudulent clicks [9], make it virtually impossible to use these machine learning
algorithms.

Another line of proposals attempts to reduce click fraud by removing the
incentives for it. Each display of an ad is called an impression. Goodman [2] pro-
posed selling advertisers a particular percentage of all impressions rather than
user clicks. Similar proposals have suggested selling impressions. For a click-
through-rates of 1%, the expected price per impression in the scenario mentioned
above is just one cent. Thus, to force a payment of $1,000,000 upon the adver-
tiser, 100,000,000 fraudulent impressions must be generated versus just 1,000,000
fraudulent clicks in the pay-per-click system. When such large quantities of fraud
are required to create the desired effect, it ceases to be profitable to the scammer.

Although percentage and impression based proposals effectively eliminate
fraud, they suffer from three major drawbacks. First, the developed industry
standard sells clicks, and any major departure from this model risks a negative
backlash in the marketplace. Second, by selling clicks, the service provider sub-
sumes some of the risk due to natural fluctuations in the marketplace (differences
between day and night or week and weekend, for example). Third, by requesting
a bid per click, the service provider lessons the difficulty of the strategic calcula-
tion for the advertiser. Namely, the advertiser only needs to estimate the worth
of a click, an arguably easier task than estimating the worth of an impression.

In this paper, we attempt to eliminate the incentives for click fraud in a
system that sells clicks. We focus on a common pay-per-click system, generally
believed to be used by Google [3] among others, which has been shown empiri-
cally to have higher revenue [1, 4] than other pay-per-click systems like that of
Overture [6]. This system is based on estimates of the click-through rate (CTR)
of an ad. The CTR is defined as the likelihood, or probability, that an impression
of an ad generates a click. In this system, each advertiser submits a bid which
is the maximum amount the advertiser is willing to pay per click of the ad. The
advertisers are then ranked based on the product of their bids and respective
estimated CTRs of their ads. This product can be interpreted as an expected bid
per impression. The ad space is allocated in the order induced by this ranking.
Advertisers are charged only if they receive a click, and they are charged an
amount inversely proportional to their CTR.

In pay-per-click systems, when a fraudulent click happens, an advertiser has
to pay for it, resulting in a short term loss to the advertiser whose ad is being
clicked fraudulently. However, in the system described above, there is a long
term benefit too. Namely, a fraudulent click will be interpreted as an increased

likelihood of a future click and so result in an increase in the estimate of the CTR.
As the payment is inversely proportional to the CTR, this results in a reduction
in the payment. If the short term loss and the long term benefit exactly cancel
each other, then there will be less incentive to generate fraudulent clicks; in
fact, a fraudulent click or impression will only cost the advertiser as much as
a fraudulent impression in a pay-per-impression scheme. Whether this happens
depends significantly on how the system estimates the CTRs. There are a variety
of sensible algorithms for this task. Some options include taking the fraction of
all impressions so far that generated a click, or the fraction of impressions in the
last hour that generated a click, or the fraction of the last hundred impressions
that generated a click, or the inverse of the number of impressions after the most
recent click, and so on.

We prove that a particular class of learning algorithms, called click-based
algorithms, have the property that the short term loss and long term benefit in
fact cancel. Click-based algorithms are a class of algorithms whose estimates are
based upon the number of impressions between clicks. To compute the current
estimate, a click-based algorithm computes a weight for each impression based
solely on the number of clicks after it and then takes the weighted average. An
example of an algorithm in this class is the one which outputs an estimate equal
to the reciprocal of the number of impressions before the most recent click. We
show that click-based algorithms satisfying additional technical assumptions are
fraud-resistant in the sense that a devious user can not change the expected
payment of the advertiser per impression (see Section 3 for a formal definition).
We provide an example that a traditional method for estimating CTR (that
is, taking the average over a fixed number of recent impressions) is not fraud-
resistant.

The structure of this paper is as follows. In Section 2, we describe the setting.
In Section 3, we define a very general class of algorithms for learning the CTR of
an ad, called CTR learning algorithms. In Section 4, we define a special class of
these algorithms, called click-based algorithms, and prove that they are fraud-
resistent. In Section 5, we give examples showing that other common algorithms
for learning the CTR are not fraud-resistent.

2 Setting

We consider a simple setting in which a service provider wishes to sell space for a
single ad on a web page. There are a number of advertisers, each of whom wishes
to display their ad on the web page. The service provider sells the ad space
according to the pay-per-click model and through an auction: the advertiser
whose ad is displayed is charged only when a user clicks on his ad. Each advertiser
i submits a bid bi indicating the maximum amount he is willing to pay the service
provider when a user clicks on his ad. The allocation and price is computed using
the mechanism described below.

For each ad, the service provider estimates the probability that the ad receives
a click from the user requesting the page, if it is displayed. This probability is

called the click-through-rate (CTR) of the ad. Each bid bi is multiplied by the
estimate λi of the CTR of the ad. The product λibi thus represents the expected
willingness-to-pay of advertiser i per impression. The slot is awarded to the
advertiser i∗ with the highest value of λibi. If the user indeed clicks on the ad,
then the winning advertiser is charged a price equal to the second highest λibi

divided by his (that is, the winner’s) estimated CTR (that is, λi∗). Thus, if we
label advertisers such that λibi > λi+1bi+1, then the slot is awarded to advertiser
1 and, upon a click, he is charged a price λ2b2/λ1. In this paper, we study the
mechanism over a period of time during which the same advertiser wins the
auction, and the value of λ2b2 does not change. If the advertisers do not change
their bids too frequently and λ1b1 and λ2b2 are not too close to each other, it is
natural to expect this to happen most of the time. We will henceforth focus on
the winner of the auction, defining p := λ2b2 and λ := λ1.

3 CTR Learning Algorithms

Of course, we have left unspecified the method by which the algorithm learns
the CTRs. The subject of this work is to study different algorithms for comput-
ing the CTR of an advertiser. There are a variety of different algorithms one
could imagine for learning the CTR of an ad. Some simple examples, described
below, include averaging over time, impressions, or clicks, as well as exponential
discounting.

– Average over fixed time window: For a parameter T , let x be the num-
ber of clicks received during the last T time units and y be the number of
impressions during the last T time units. Then λ = x/y.

– Average over fixed impression window: For a parameter y, let x be the
number of clicks received during the last y impressions. Then λ = x/y.

– Average over fixed click window: For a parameter x, let y be the number
of impressions since the x’th last click. Then λ = x/y.

– Exponential discounting: For a parameter α, let e−αi be a discounting
factor used to weight the i’th most recent impression. Take a weighted aver-
age over all impressions, that is,

∑
i xie

−αi/
∑

i e−αi where xi is an indicator
variable that the i’th impression resulted in a click.

These algorithms are all part of a general class defined below. The algorithm
estimates the CTR of the ad for the current impression as follows: Label the
previous impressions, starting with the most recent, by 1, 2, Let ti be the
amount of time that elapsed between impression i and impression 1, and ci

be the number of impressions that received clicks between impression i and
impression 1 (impressions 1 included). The learning algorithms we are interested
in are defined by a constant γ and a function δ(ti, i, ci) which is decreasing in all
three parameters. This function can be thought of as a discounting parameter,
allowing the learning algorithm to emphasize recent history over more distant
history. Let xi be an indicator variable for the event that the i’th impression

resulted in a click. The learning algorithm then computes

λ =
∑∞

i=1 xiδ(ti, i, ci) + γ∑∞
i=1 δ(ti, i, ci) + γ

.

The constant γ is often a small constant that is used to guarantee that the
estimated click-through-rate is strictly positive and finite. Notice that in the
above expression, the summation is for every i from 1 to ∞. This is ambiguious,
since the advertiser has not been always present in the system. To remove this
ambiguity, the algorithm assumes a default infinite history for every advertiser
that enters the system. This default sequence could be a sequence of impressions
all leading to clicks, indicating that the newly arrived advertiser is initialized
with a CTR equal to one, or (as it is often the case in practice) it could be
a sequence indicating a system-wide default initial CTR for new advertisers.
For most common learning algorithms, the discount factor becomes zero or very
small for far distant history, and hence the choice of the default sequence only
affects the estimate of the CTR at the arrival of a new advertiser.

Note that all three learning methods discussed above are included in this
class (for γ = 0).

– Average over fixed time window: The function δ(ti, i, ci) is 1 if ti ≤ T
and 0 otherwise.

– Average over fixed impression window: The function δ(ti, i, ci) is 1 if
i ≤ y and 0 otherwise.

– Average over fixed click window: The function δ(ti, i, ci) is 1 if ci ≤ x
and 0 otherwise.

– Exponential discounting: The function δ(ti, i, ci) is e−αi.

4 Fraud Resistance

For each of the methods listed in the previous section, for an appropriate setting
of parameters (e.g., large enough y in the second method), on a random sequence
generated from a constant CTR the estimate computed by the algorithm gets
arbitrarily close to the true CTR, and so it is not a priori apparent which method
we might prefer. Furthermore, when the learning algorithm computes the true
CTR, the expected behavior of the system is essentially equivalent to a pay-per-
impression system, with substantially reduced incentives for fraud. This might
lead to the conclusion that all of the above algorithms are equally resistant to
click fraud. However, this conclusion is wrong, as the scammer can sometimes
create fluctuations in the CTR, thereby taking advantage of the failure of the
algorithm to react quickly to the change in the CTR to harm the advertiser.

In this section, we introduce a notion of fraud resistance for CTR learning
algorithms, and prove that a class of algorithms are fraud-resistant. The defini-
tion of fraud resistance is motivated by the way various notions of security are
defined in cryptography: we compare the expected amount the advertiser has to
pay in two scenarios, one based on a random sequence generated from a con-
stant CTR without any fraud, and the other with an adversary who can change

a fraction of the outcomes (click vs. no-click) on a similar random sequence.
Any scenario can be described by a time-stamped sequence of the outcomes of
impressions (i.e., click or no-click). More precisely, if we denote a click by 1 and
a no-click by 0, the scenario can be described by a doubly infinite sequence s
of zeros and ones, and a doubly infinite increasing sequence t of real numbers
indicating the time stamps (the latter sequence is irrelevant if the learning algo-
rithm is time-independent, which will be the case for the algorithms we consider
in this section). The pair (s, t) indicates a scenario where the i’th impression (i
can be any integer, positive or negative) occurs at time ti and results in a click
if and only if si = 1.

Definition 1. Let ε be a constant between zero and one, and (s, t) be a scenario
generated at random as follows: the outcome of the ith impression, si, is 1 with
an arbitrary fixed probability λ and 0 otherwise, and the time difference ti− ti−1

between two consecutive impressions is drawn from a Poisson distribution with an
arbitrary fixed mean. For a value of n, let (s′, t′) be a history obtained from (s, t)
by letting an adversary insert at most εn impressions after the impression indexed
0 in (s, t). The history (s′, t′) is indexed in such a way that impression 0 refers to
the same impression in (s, t) and (s′, t′). We say that a CTR learning algorithm
is ε-fraud resistant if for every adversary, the expected average payment of the
advertiser per impression during the impressions indexed 1, . . . , n in scenario
(s′, t′) is bounded by that of scenario (s, t), plus an additional term that tends to
zero as n tends to infinity (holding everything else constant). More precisely, if
qj (q′j, respectively) denotes the payment of the advertiser for the jth impression
in scenario (s, t) ((s′, t′), respectively), then the algorithm is ε-fraud resistant if
for every adversary,

E[
1
n

n∑
j=1

q′j] ≤ E[
1
n

n∑
j=1

qj] + o(1).

Intuitively, in a fraud-resistant algorithm, a fraudulent click or impression
only costs the advertiser as much as a fraudulent impression in a pay-per-
impression scheme.

Some details are intentionally left ambiguous in the above definition. In par-
ticular, we have not specified how much knowledge the adversary has. In practice,
an adversary probably can gain knowledge about some statistics of the history,
but not the complete history. However, our positive result in this section holds
even for an all powerful adversary that knows the whole sequence (even the fu-
ture) in advance. We prove that even for such an adversary, there are simple
learning algorithms that are fraud-resistant. Our negative result (presented in
the next section), shows that many learning algorithms are not fraud-resistant
even if the adversary only knows about the learning algorithm and the frequency
of impressions in the scenario. Therefore, our results are quite robust in this re-
spect.

Another point that is worth mentioning is that the assumption that the true
click-through rate λ is a constant in the above definition is merely a simplifying

assumption. In fact, our results hold (with the same proof) even if the parameter
λ changes over time, as long as the value of λ at every point is at least a positive
constant (i.e., does not get arbitrarily close to zero). Also, the choice of the
distribution for the time stamps in the definition was arbitrary, as our positive
result only concerns CTR learning algorithms that are time-independent, and
our negative result in the next section can be adapted to any case where the
time stamps come from an arbitrary known distribution.

In this section, we show that CTR learning algorithms for which the dis-
counting factor, δ, depends only on the number of impressions in the history
which resulted in clicks, that is the parameter ci defined above (and not on i
and ti), are fraud-resistant. We call such algorithms click-based algorithms.

Definition 2. A CTR learning algorithm is click-based if δ(ti, i, ci) = δ(ci) for
some decreasing function δ(.).

Of the schemes listed in the previous section, it is easy to see that only aver-
aging over clicks is click-based. Intuitively, a click-based algorithm estimates the
CTR by estimating the Expected Click-Wait (ECW), the number of impression
it takes to receive a click.

The following theorem shows that click-based algorithms are fraud-resistant.

Theorem 1. Consider a click-based CTR learning algorithm A given by a dis-
counting function δ(.) and γ = 0. Assume that

∑∞
i=1 iδ(i) is bounded. Then for

every ε ≤ 1, the algorithm A is ε-fraud-resistant.

Proof. The proof is based on a simple “charging” argument. We distribute the
payment for each click over the impressions preceding it, and then bound the
expected total charge to any single impression due to the clicks after it.

We begin by introducing some notations. For any scenario (s, t) and index
i, let Si,j denote the set of impressions between the j’th and the (j − 1)’st
most recent click before impression i (including click j but not click j − 1) and
ni,j = |Si,j |. Then the estimated CTR at i can be written as∑∞

j=1 δ(j)∑∞
j=1 ni,jδ(j)

. (1)

and hence the payment at i if impression i receives a click is

p×
∑∞

j=1 ni,jδ(j)∑∞
j=1 δ(j)

.

We now introduce a scheme to charge this payment to the preceding impres-
sions (for both with-fraud and without-fraud scenarios). Fix an impression i′ for
i′ < i and let j be the number of clicks between i′ and i (including i′ if it is a
click). If impression i leads to a click, we charge i′ an amount equal to

p× δ(j)∑∞
j=1 δ(j)

. (2)

for this click. Summing over all impressions preceding click i, we see that the total
payment charged is equal to the payment for the click at impression i. The crux
of the argument in the remainder of the proof is to show that in both scenarios,
with or without fraud, the average total payment charged to an impression i in
the interval [1, n] by clicks occurring after i is p± o(1). We start by proving an
upper bound on the total amount charged to the impressions.

We first focus on bounding the total amount charged to impressions before
impression 0. The impressions in the set S0,j are charged by the i’th click after
impression 0 a total of

p× n0,jδ(i + j)∑∞
k=1 δ(k)

.

Summing over all clicks between impression 0 and impression n (inclusive), we
see that the total charge to the impressions in S0,j is at most

p×
∑∞

i=1 n0,jδ(i + j)∑∞
k=1 δ(k)

.

Summing over all sets S0,j , we see that the total charge to impressions before 0
is at most

p×
∑∞

j=1

∑∞
i=1 n0,jδ(i + j)∑∞
k=1 δ(k)

.

Since the denominator
∑∞

k=1 δ(k) is a positive constant, we only need to bound
the expected value of the numerator

∑∞
j=1

∑∞
i=1 n0,jδ(i + j).

Since in both with-fraud and without-fraud scenarios the probability of click
for each impression before impression 0 is λ, the expected value of n0,j in both
scenarios is 1/λ. Therefore, the expectation of the total amount charged to im-
pressions before 0 in both scenarios is at most

p

λ
×

∑∞
j=1

∑∞
i=1 δ(i + j)∑∞

k=1 δ(k)
=

p

λ
×

∑∞
k=1 kδ(k)∑∞
k=1 δ(k)

,

which is bounded by a constant (i.e., independent of n) since
∑∞

k=1 kδ(k) is
finite.

We now bound payments charged to impressions after impression 0. For a
fixed impression i with 0 ≤ i ≤ n, the payment charged to i by the j’th click
after i is given by Equation 2. Summing over all j, we see that the total payment
charged to i is at most

p×
∑∞

j=1 δ(j)∑∞
j=1 δ(j)

= p. (3)

By the above equation along with the fact that the expected total charge
to impressions before impression 0 is bounded, we see that the expected total
charge of all impressions is at most np+O(1), and therefore the expected average
payment per impression (in both with-fraud and without-fraud scenarios) is at
most p + o(1).

We now show that in the scenario (s, t) (i.e., without fraud), the expected
average payment per impression is at least p−o(1). Let k be the number of clicks
in the interval [1, n] and consider an impression in Sn,j . Then, by Equation 2,
this impression is charged an amount equal to

p×
∑j−1

i=1 δ(i)∑∞
i=1 δ(i)

= p−
p

∑∞
i=j δ(i)∑∞

i=1 δ(i)
.

Therefore, the total amount charged to the impressions in the interval [1, n] is
at least

np−
p

∑k+1
j=1 nn,j

∑∞
i=j δ(i)∑∞

i=1 δ(i)
.

As in the previous case, the expected value of nn,j in the scenario without
any fraud is precisely 1/λ. Therefore, the expectation of the total charge to
impressions in [1, n] is at least

np−
p

∑k+1
j=1

∑∞
i=j δ(i)

λ
∑∞

i=1 δ(i)
≥ np− p

λ
×

∑∞
i=1 iδ(i)∑∞
i=1 δ(i)

.

Therefore, since
∑∞

i=1 iδ(i) is bounded, the expected average payment per im-
pression in the scenario without fraud is at least p − o(1). This shows that the
difference between the expected average payment per impression in the two sce-
narios is at most o(1), and hence the algorithm is ε-fraud resistant.

5 Non-Click-Based Algorithms

In this section, we give an example that shows that in many simple non-click-
based algorithms (such as averaging over fixed time window or impression win-
dow presented in Section 3), an adversary can use a simple strategy to increase
the average payment of the advertiser per impression. We present the example
for the learning algorithm that takes the average over a fixed impression win-
dow. It is easy to see that a similar example exists for averaging over a fixed
time window.

Consider a history defined by setting the outcome of each impression to click
with probability λ for a fixed λ. Denote this sequence by s. We consider the
algorithm that estimates the CTR by the number of click-throughs during the
past l impressions plus a small constant γ divided by l + γ, for a fixed l. If l is
large enough and γ is small but positive, the estimate provided by the algorithm
is often very close to λ, and therefore the average payment per impression on
any interval of length n is arbitrarily close to p. In the following proposition, we
show that an adversary can increase the average payment by a non-negligible
amount.

Proposition 1. In the scenario defined above, there is an adversary that can
increase the average payment per impression over any interval of length n, for

any large enough n, by inserting εn fradulent impressions and clicking on some
of them.

Proof Sketch: Consider the following adversary: The adversary inserts εn frad-
ulent impressions distributed uniformly in the interval starting at the impression
indexed 1 and ending at the impression indexed (1− ε)n (with an outcome de-
scribed below), so that in the scenario with fraud, each of the first n impressions
after impression 0 is fradulent with probability ε. Divide the set of impressions
after impression 0 into a set of intervals I1, I2, . . ., where each interval Ij con-
tains l impressions (real or fradulent). In other words, I1 is the set of the first l
impressions after impression 0, I2 is the set of the next l impressions, etc. The
adversary sets the outcome of all fradulent impression in Ij for j odd to click and
for j even to no-click. This means that the “true” CTR during Ij is (1− ε)λ + ε
for odd j and (1 − ε)λ for even j. The algorithm estimates the CTR for the
r’th impression of the interval Ij by dividing the number of clicks during the
last l impressions by l. Of these impressions, r are in Ij and l − r are in Ij−1.
Therefore, for j even, the expected number of clicks during the last l impressions
is

r(1− ε)λ + (l − r) ((1− ε)λ + ε) ,

and therefore the estimated CTR is the above value plus γ divided by l + γ in
expectation. When l is large and γ is small, this value is almost always close
to its expectation. Therefore, price of a click for this impression is close to pl
divided by the above expression. Thus, since the probability of a click for this
impression is (1−ε)λ, the expected payment of the advertiser for this impression
can be approximated using the following expression.

pl(1− ε)λ
r(1− ε)λ + (l − r) ((1− ε)λ + ε)

The average of these values, for all r from 1 to l, can be approximated using
the following integral.

1
l

∫ l

0

pl(1− ε)λ
r(1− ε)λ + (l − r) ((1− ε)λ + ε)

dr =
p(1− ε)λ

ε
ln

(
1 +

ε

(1− ε)λ

)
.

Similarly, the total expected payment of the advertiser in the interval Ij for
j odd and j > 1 can be approximated by the following expression.

p((1− ε)λ + ε)
ε

ln
(

1 +
ε

(1− ε)λ

)
.

Denote α = ε
(1−ε)λ . Therefore, the average payment of the advertiser per

impression can be written as follows.

p(
1
2

+
1
α

) ln(1 + α)

Since α is a positive constant, it is easy to see that the above expression is
strictly greater than p.

6 Discussion

In this paper, we discussed pay-per-click marketplaces and proved that a par-
ticular class of learning algorithms can reduce click fraud in a simplified setting.
Our results lead to several interesting extensions and open questions.

Pay-Per-Acquisition Marketplaces. We focused on pay-per-click marketplaces.
Our reasons for this were three-fold: it is a common industry model, it absorbs
risk due to market fluctuations for the advertiser, and it simplifies the strategic
calculations of the advertiser. The latter two of these comments can be equally
well employed to argue the desirability of a pay-per-acquisition marketplace.
In these marketplaces, a service provider receives payment from an advertiser
only when a click resulted in a purchase. Such systems are used by Amazon, for
example, to sell books on web pages: a service provider, say Expedia, can list an
Amazon ad for a travel guide with the understanding that, should a user purchase
the product advertised, then the service provider will receive a payment. The
problem with pay-per-acquisition systems is that the service provider must trust
the advertiser to truthfully report those clicks which result in acquisitions. Our
results hint at a solution for this problem. We have seen that in a simple scenario
with a single ad slot, click-based algorithms are fraud-resistant in the sense that
the expected payment per impression of an advertiser can not be increased by
click fraud schemes. In fact, it can also be shown that this payment can not be
decreased either. Thus, as click-based learning algorithms reduce fraud in pay-
per-click systems, acquisition-based learning algorithms induce truthful reporting
in pay-per-acquisition systems.

Computational Issues. We have shown that click-based learning algorithms
eliminate click fraud. However, in order to be practical and implementable, learn-
ing algorithms must also be easily computed with constant memory. The com-
putability of a click-based algorithm depends significantly on the choice of the
algorithm. Consider, for example, a simple click-based exponentially-weighted
algorithm with δ(i) = e−αi. Just two numbers are needed to compute this es-
timate: the estimate of the click-through rate for the most recent impression
that lead to a click and a counter representing the number of impressions since
the last click. However, other click-based algorithms have worse computational
issues. Consider an algorithm in which δi ∈ {0, 1} with δi = 1 if and only if i ≤ l
for some (possibly large) l. Then at least l numbers must be recorded to compute
this estimate exactly. One interesting question is how efficiently (in terms of the
space) a given estimate can be computed.

7 Acknowledgement

We like to thank Omid Etesami and Uriel Feige for fruitful discussions.

References

1. J. Feng, H. K. Bhargava, and D. Pennock. Comparison of allocation rules for paid
placement advertising in search engines. In Proceedings of the fifth International
Conference on Electronic Commerce, Pittsburgh, PA, USA, 2003.

2. J. Goodman. Pay-per-percentage of impressions: an advertising method that is
highly robust to fraud. Workshop on Sponsored Search Auctions, 2005.

3. http://adwords.google.com.
4. Hemant Bhargava Juan Feng and David Pennock. Implementing paid placement in

web search engines: Computational evaluation of alternative mechanisms”, accepted
by informs journal of computing. to appear in the Informs Journal of Computing.

5. D. Mitchell. Click fraud and halli-bloggers. New York Times, July 16, 2005.
6. http://searchmarketing.yahoo.com.
7. A. Penenberg. Click fraud threatens web. Wired News, October 13, 2004.
8. B. Stone. When mice attack: Internet scammers steal money with ‘click fraud’.

Newsweek, January 24, 2005.
9. N. Vidyasagar. India’s secret army of online ad ‘clickers’. The Times of India, May

3, 2004.

