
The Goals and Challenges of Click Fraud Penetration Testing Systems

Carmelo Kintana∗, David Turner∗, Jia-Yu Pan∗, Ahmed Metwally∗, Neil Daswani∗, Erika Chin§†, Andrew Bortz§‡, and

The Google Ad Traffic Quality Team∗
∗Google, Inc.

†University of California, Berkeley
‡Stanford University

Abstract—It is important for search and pay-per-click en-

gines to penetration test their click fraud detection systems, in
order to find potential vulnerabilities and correct them before
fraudsters can exploit them. In this paper, we describe: (1) some

goals and desirable qualities of a click fraud penetration testing
system, based on our experience, and (2) our experiences with
the challenges of building and using a click fraud penetration

testing system called Camelot that has been in use at Google.

I. INTRODUCTION

Click fraud is the act of clicking ads with fraudulent

or malicious intent to generate illegitimate revenue or hurt

competitors. Since online advertising networks act as brokers

of multi-billion dollar online advertising revenue streams,

click fraud is a major responsibility and concern. While

Google needs to be cautious with exposing information

about its click fraud detection techniques to preserve its

effectiveness, [1] reports on reasonable countermeasures that

Google deployed, and in [2], [3], Daswani et al. gives a

panoramic treatment of the types of click fraud, counter-

measures, and detection filters that Google employs.

Click fraud filters mark a click as invalid to not charge the

advertiser for malicious or poor quality clicks [2]. Determin-

ing whether a particular click is correctly marked as invalid

by a set of filters is fundamentally a difficult problem, since

judging a click as fraudulent depends on the clicker’s intent,

and it is sometimes impossible to definitively ascertain

intent. One approach that can be used to measure the false

negatives of a set of filters (i.e., the unfiltered malicious

clicks) is to inject artificial clicks into a click stream, run the

click stream through click filters, and examine how different

the set of clicks marked invalid is from the set of artificial

clicks.

This paper describes the desirable properties of a practical

click fraud penetration testing (hence referred to as pen-

testing) system and highlights the challenges of realizing

such a system. We have built Camelot, a system that has

been used by the Google Ad Traffic Quality Team to

conduct isolated click fraud experiments against our online

detection filters to identify potential vulnerabilities under

semi-realistic conditions without impacting advertisers and

§ This work was done while authors were interning at Google, Inc.

publishers. During pen-testing exercises, Camelot is used to

simulate novel attacks, proactively find potential vulnerabil-

ities before malicious external attackers, and correct them

when necessary.

Besides conducting penetration tests on click filters, a

pen-testing system can be used for other purposes, such

as a regression testing tool during the development of new

filters. In addition, the pen-testing system may be provided

to elect advertisers and academic researchers to assess the

effectiveness of the click fraud filters without revealing their

implementation details.

We restrict the construction of the pen-testing system

to a subset of click filters. Some of the filters at Google

are not suitable for pen-testing, because they take input

from offline data sources. Moreover, the click filters are

just one component of all possible defenses against click

fraud; other components include various offline automated

detection tools, as well as human reviewers.

The organization of this paper is as follows. Section II

describes desirable requirements of a click fraud pen-testing

system and Google’s implementation of such a system,

Camelot. Section III focuses on the challenges of build-

ing and using click fraud pen-testing systems, including

challenges specific to Camelot. Section IV describes our

experience with Camelot. Section V discusses the related

work, and we conclude in Section VI.

II. THE GOALS AND PROPERTIES OF CLICK FRAUD

PENETRATION TESTING SYSTEMS

A click fraud pen-testing system provides an environ-

ment for testers to conduct experimental attacks on a click

fraud detection system, with the main goal of proactively

finding vulnerabilities in the system before being exploited

by malicious attackers. By finding security vulnerabilities

earlier, the click fraud filters can be improved and mali-

cious attackers have fewer chances of conducting successful

attacks. Therefore, a desirable pen-testing system should

include several functionalities. In particular, the system

should be flexible in emulating attacks at different levels of

sophistication (flexibility) and be easy to use in conducting

experiments (simplicity). In addition, for practical reasons,

a desirable pen-testing system should have no impact on

Copyright ISSRE 2009

https://ppcprotect.com/

real world entities and traffic, and allow experiments to be

conducted in an isolated fashion (isolation).

Emulating an attack scenario includes setting up the

entities (e.g., the clicking users, ad links to be clicked on,

content publishers, and advertisers) and the traffic (including

query and click traffic) among them. A flexible pen-testing

system allows a pen-tester to realistically emulate an attack

through properly setting up the parameters of the involved

entities and traffic, and to conduct controlled experiments by

tuning the parameters to find vulnerabilities in the click fraud

detection system. Moreover, the pen-testing system should

be easy to use, making the entities and traffic (by simulation)

available to the pen-testers and provide fast feedback on the

successful rate of the experiments to shorten the experiment

cycles.

To achieve the flexibility and simplicity of a practical pen-

testing system, we identify a list of properties in Table I. We

group these properties into two categories: (1) “Real,” the

properties needed to simulate attacks in a realistic manner,

and (2) “Virtual,” those specifically designed to facilitate

the pen-testing experiments. A general characteristic of the

properties in Table I is that no property should make it harder

for a pen-tester to conduct an experimental attack compared

to conducting the same attack in reality, nor makes detection

of the bad traffic any easier by the filters. The list is not

intended to be exhaustive, and each of these properties is

explained in detail in the remainder of this section.

For a practical system, the Isolation property (V1) is

considered a high priority among the properties listed in

Table I. In practice, it is crucial for pen-testing experiments

not to interfere with the real-world advertisers and traffic.

For example, the experimental clicks of the pen-testing

system neither should have an impact on the budget of real-

world advertisers, nor should the clicks appear in real-world

advertisers’ log files. Similarly, injecting experimental clicks

in real traffic should neither consume production resources,

nor increase latency in processing real traffic. Furthermore,

our production online filters (and all components of our ad

system) should not consider injected traffic when making

decisions.

Since the main goal of the pen-testing system is to find

vulnerabilities, virtual properties that make it easier for pen-

testers to conduct experiments quickly are also desirable to

have. These properties include fast feedback, ability to run

simultaneous experiments, and virtualizing some resources

such as IPs for instance.

A. Properties for Real World Effects

For a pen-testing system to simulate all possible attacks

that can be conducted in the real world, it should have func-

tionalities that simulate activities happening in the real world

and should provide pen-testers with information that real

attackers can gain. We discuss several real-world properties

for a pen-testing system in this section.

R1 Traffic Examinations: In the real world, an attacker

may have control on real traffic from one or more machines

by owning or compromising them. There are two major

benefits to having access to real traffic: (1) it allows attackers

to learn actual usage patterns, and (2) it enables the ability to

“piggyback” the fraudulent traffic on top of actual, legitimate

traffic. Knowledge of the normal traffic patterns enables the

attacker to generate fraudulent traffic that mimics normal

usage. With access to a single compromised machine, an

attacker is given a real user’s history and future traffic, use

of a real browser, real IP address, etc. With access to many

compromised machines, an attacker is additionally given a

real distribution of machine and user types. A pen-testing

system should provide this traffic pattern information to the

pen-testers and should allow mixing of organic traffic with

the artificial traffic.

For the types of attacks that an attacker can conduct with

a compromised machine, an attacker can execute attacks

that depend on user behavior, simultaneously borrowing

distributions such as query and timing and outputting cover

traffic. Moreover, the attacker could “piggyback” clicks, that

is, inject fraudulent clicks when users perform real queries

and clicks.

R2 All Defenses: To be most realistic, a pen-tester’s

attack should face all the defenses that a real attacker

would face. Besides online click filters, the defenses of

a typical ad network provider usually also include query

and conversion filters, offline automated detection tools, and

human reviewers. Depending on the scope of the penetration

testing, a pen-testing system should provide the defense

components to be tested. However, many of these may be

difficult or impractical to run against for penetration testing.

In this study, we focus on pen-testing a subset of the online

click filters.

R3 Real Effects: In the real world, a change in traffic pat-

tern (e.g., receiving fraudulent traffic) usually triggers real-

time effects on the ad serving network, as well as long-term

effects on the advertisers and the publishers. For instance,

on an ad serving network, the additional fraudulent traffic

consumes an advertiser’s budget in real-time and may trigger

the ad serving network to stop serving ads if the budget

is depleted. At a larger time frame, the fraudulent traffic

may trigger an advertiser to change its bidding strategy or

a publisher to change the layout of the content pages. It

is desirable for a pen-testing system to simulate these real

effects, so that the impact of an experimental attack can be

evaluated realistically.

Lacking real effect simulation may bias the outcome of

an attack. For example, without simulating the budget effect,

the ad serving system will continue to present the same set

of ads for the same query (i.e., no ad cycling) and limit an

attacker to a small set of ads to attack. Attacking a small

set of ads creates an unrealistic concentration of fraudulent

traffic, making the experimental attack easier to catch than

Table I

PROPERTIES OF A PEN-TESTING SYSTEM

 REAL

Number Name Description

R1 Traffic Examinations “Sees” traffic from a real network connection.
R2 All Defenses All production defenses are tested against.
R3 Real Effects Real effects on advertisers and users
R4 All Advertisers/Publishers Has access to all advertisers/publishers.

VIRTUAL

Number Name Description

V1 Isolation Does not influence real advertisers,

 publishers, and users.
V2 Resource Emulation Provide virtual resources to conduct more

 powerful attacks.
V3 Fast and Accurate Feedback Fast feedback loop with detailed information.
V4 Virtual Time Compression Speed up simulation time of attack.
V5 Simultaneous Experiments Runs multiple experiments simultaneously.
V6 Traffic Composition Total control of traffic writes.

in the real world. On the other hand, without the budget-

ing effect, a successful experimental attack potentially can

achieve unlimited revenue from a single ad and erroneously

inflate the actual impact of the attack in the real world. If

the goal is to identify potential vulnerabilities in the filters,

it is more important to make sure pen-testing attacks are

no easier to detect the realistic ones (e.g., due to lack of

ad cycling). The fact that some attacks may have greater

success than in the real world is less of an issue.

R4 All Advertisers and Publishers: In the real world, an

attacker can target any publisher and click on any ad in any

content page. To be able to explore the full design space,

a pen-tester must be able to attack any actual advertiser on

any publisher site. Limiting a pen-tester to a small set of

advertisers and publishers can make an experimental attack

easier to catch (due to the unrealistic concentration of traffic

as discussed for R3).

B. Properties for Virtual Effects

As mentioned in the beginning of this section, a pen-

testing system should make the pen-testing experiments easy

and safe to conduct with no impact on the real world traffic

and entities (the “simplicity” and “isolation” functionalities).

In this section, we discuss these additional “Virtual” prop-

erties in detail.

V1 Isolation: In practice, a pen-tester’s experimental

attack should not impact any real advertisers, publishers,

or users in any way. Additionally, pen-testing should not

impose unnecessary impact on our production system. In

particular, any click, query, and conversion made by the

pen-tester should not appear in production logs and should

not affect production filters. Any lack of isolation may

also have financial and legal implications. We made this

property the top priority when designing our “Camelot”

system (described in Section II-C).

V2 Resource Emulation: Resources that are relevant to a

pen-testing experiment include machine IPs (for establishing

valid TCP/IP connections) and client side state (e.g., cook-

ies). To simplify a pen-tester’s job in conducting arbitrary

attacks, it is desirable for a pen-testing system to provide

virtual resources and allow the pen-tester to focus on finding

vulnerabilities. With this property, a pen-tester can also

design attack schemes which may not be as easy to conduct

in the real world. For instance, an experiment involving a

botnet of 10K machines should be easily conducted in the

pen-testing system, without needing to obtain access to 10K

physical machines as in the real world.

V3 Fast and Accurate Feedback: Another property that

makes iterative experiments simpler is fast and accurate

feedback, especially in the form of the number of invalid

clicks detected from the filters. Compared to the real world

scenario, a pen-testing system can provide more timely

feedback to the pen-tester. Moreover, feedback to the pen-

testers can be more accurate and detailed (all the way to

providing results at the click-by-click level).

In the real world, ad networks like Google have worked

very hard to prevent malicious attackers from obtaining feed-

back pertaining to their attacks. For an attacker who targets

Google search ads (e.g., to hurt competitor advertisers), one

way for the attacker to obtain feedback is to focus her

attack on a particular ad until depleting the budget of the

ad (i.e., until the particular ad is not served by Google

when given the same search keywords). For an attacker

who targets content ads (e.g., to make money directly),

the attacker can join the ad network as a publisher (e.g.,

Google’s AdSense for Content program) and conduct attacks

on her own content pages. The feedback of the content ad

attack can be obtained from the reports that the ad network

provides to the publisher (same as the attacker in this case).

Comparing the feedback for these two kinds of attacks,

the feedback for search ad attacks is ambiguous (e.g., a

large budget may lead to an ad to continue to show, or

budget may have been depleted by organic traffic) and only

gives the attacker a coarseness of the success of the attack.

The feedback for content ad attacks is more detailed, but

ad networks can also take steps to dampen the feedback

information (for example, by providing aggregated statistics

to publishers).

V4 Virtual Time Compression: To allow pen-testers to

conduct more iterations of pen-testing to find vulnerabilities,

it is necessary for the pen-testing system to speed up the

simulation time of an experimental attack. In particular, the

simulation time should be shorter than the time frame of

an attack in real world. For example, it is impractical for a

pen-tester to spend three months to conduct an experimental

attack that spans three months. We call this property of pen-

testing systems the “virtual time compression” property.

V5 Simultaneous Experiments: A practical feature for

a pen-testing system is to allow a pen-tester to conduct

simultaneous, isolated attacks in order to quickly iterate

through different experiments. This is not possible in the

real world, since the clicks for two independent attacks

on production Google Search are interleaved in the same

set of logs, possibly causing interactions during click fraud

filtering. Isolation, and the ability to replicate instances of

the Camelot system, makes it easy for us to provide this

ability.

V6 Traffic Composition: To permit more comprehensive

exploration of the design space of attacks, a pen-tester

should be allowed complete control over all traffic that

reaches the ad network during the experiment, including

creation or deletion of legitimate background traffic. For

instance, if a pen-tester is simulating a 100-machine botnet,

the simulation environment should allow her to inject traffic

patterns of other uncompromised machines as well. In

addition, having this property gives a pen-tester ability to

conduct controlled experiments, by tuning particular traffic

and studying the corresponding impact.

This property provides a pen-tester more control than what

an attacker has in reality, since a pen-tester can fully control

traffic from all sources, while a real attacker can only alter

the traffic of machines under her control. This property is

closely coupled with the R1 property where artificial traffic

can be piggybacked on top of legitimate traffic. However,

this does not belong to the “Real” category since an attacker

cannot prohibit traffic from uncompromised machines from

reaching the ad network.

With the properties listed above, we can compare the envi-

ronment a real attacker faces with the environment provided

by our current implementation of Camelot (Camelot 1.0 is

discussed in Section II-C). Table II summarizes the differ-

ences between the two environments, with respect to the

properties that we listed above. Section III-B discusses the

challenges of supporting the real features that are currently

Table II

PROPERTIES OF A REAL ATTACK AND CAMELOT 1.0

Environment Supported Not Supported

Real Attack R1, R2, R3, R4 V1, V2, V3, V4, V5, V6
Camelot 1.0 R4, V1, V2, V3, V5, V6 R1, R2, R3, V4

not fully supported in Camelot 1.0 and what is required to

support them.

C. Camelot: Google’s Pen-Testing System

In this section, we explain the design and properties of

Camelot 1.0, Google’s current implementation of an isolated

pen-testing system. There are two general strategies we used

when we designed Camelot 1.0: (1) Achieving isolation via

system replication, and (2) achieving flexibility via a two-

step procedure (i.e., a click generation step followed by a

filtering step). We discuss these design decisions in more

detail in this section.

1) Architecture: Of all the properties for a click fraud

pen-testing system, isolation is the main property that mo-

tivated the design of Camelot to prevent any unwanted

effects on real users, advertisers, and publishers. To achieve

isolation, we replicate instances of the ad servers and filter-

ing systems. We also replicate the frontends for requesting

Google Search ads or AdSense for Content ads. Thus, the

Camelot frontends provide an interface to pen-testers that is

the same to real attackers.

As seen in Figure 1, pen-testers can develop clickbots

and run them against Camelot’s frontends while treating the

click fraud detection system as a black box. Camelot logs

all clicks on ads and blocks redirects to the advertiser’s site

to avoid affecting the advertiser’s server logs. After running

an attack, the ad click logs are saved and run through the

click filters. Finally, a report that lists the total number of

clicks and invalid clicks is generated. Thus, unlike the real

world system which processes clicks in real time, Camelot

operates in a batch mode with two steps: all clicks are

generated first in Camelot and then run through the filters.

In addition, Camelot also provides penetration testers access

to the following virtual abilities to make pen-testing much

easier:

(a) Arbitrary IP addresses can be specified on both the

queries and ad clicks.

(b) Integrity checks are disabled on certain data in the HTTP

request such as cookies.

2) Properties of Camelot: Camelot provides several ad-

vantages that makes pen-testing safer and easier than con-

ducting a real world attack. The main advantage of the

Camelot system is that it provides isolation for both real

advertisers and publishers from click fraud experiments

(because of the use of separate non-production ad servers).

As a result, all of the pen-tester’s clicks and queries go in

Pen-tester

1. Run clickbot

2. Request ads 3. Return ads 4. Save ad clicks 6. Generate report

Ad Click Logs

5. Run through filters

Figure 1. Camelot Pipeline

their own logs and are never logged with real traffic, and

thus are never processed by production filters. Furthermore,

the use of non-production systems avoids overloading the

production systems, further isolating production from click

fraud experiments. Because of isolation, any ad may be

targeted in an attack.

In addition, pen-testers using Camelot can emulate re-

sources such as arbitrary IP addresses. Some additional

advantages of the Camelot system include immediate and

accurate feedback as well as the ability to parallelize exper-

iments.

There are a few drawbacks of the current Camelot imple-

mentation due to technical limitations. The first disadvantage

is that Camelot 1.0 only runs a subset of the online filters,

namely the click filters, rather than all possible defenses

(e.g., query and conversion filters). Next, clicks generated

with Camelot 1.0 are processed by the filters in isolation

rather than being merged with real clicks from that same

time period. One remaining disadvantage is that it is not

possible to actually deplete an advertiser’s budget because

we did not implement budgeting effects for use by Camelot

1.0’s ad servers. Section III-B discusses in more detail

how these technical limitations prevent Camelot 1.0 from

achieving a number of our desired properties. However, even

with these disadvantages, the combination of isolation and

virtual abilities makes Camelot 1.0 a useful pen-testing tool.

III. CHALLENGES

In this section, we explore the challenges of pen-testing,

including fundamental problems that exist in all pen-testing

systems, and problems specific to Camelot. The challenges

are followed by discussions on interesting and subtle aspects

of click fraud pen-testing.

A. Isolation versus Realism

As we outlined in the previous sections, desired properties

of a pen-testing system are sometimes mutually contradic-

tory. Any pen-testing system’s design, including Camelot’s,

must determine which set of tradeoffs to make between these

contradictory properties.

In particular, isolation of the pen-testing system from real

traffic is often in contradiction with the realism in interacting

with advertisers, publishers, and users. Take for example

the ad auction system. For realism, we would like to use

the production auction servers so the pen-tester can see real-

world ads. However, the experimental clicks that are

generated affect the production click-through rate, which

violates our isolation invariant. Any injected traffic from

experiments on the pen-testing system should not have any

effect on real world traffic, users and advertisers.

On the other hand, without any interaction with the real

advertisers and publishers, the pen-testing system is less

realistic, since it is missing the real-time reactions from the

advertisers and publishers. For instance, an advertiser may

increase the ad campaign budget, or a publisher may change

the ads layout on a site, in response to the additional clicks

inserted by the penetration tests. However, since the absence

of these effects does not make it more difficult to defeat the

filters, the pen-testing system still achieves our goals.

B. Practical Issues of Camelot 1.0

As we explained in the previous section, there are certain

features that Camelot 1.0 is missing. In this section, we

discuss all of the properties that we do not support along

with challenges in addressing these in future systems.

1) R1 Challenges (Traffic Examinations): Clicks are fil-

tered in isolation by Camelot, unlike a real attack where they

would be hidden amongst a far larger amount of legitimate

cover traffic. The fact that the only clicks being processed by

the filters are from the simulated attack gives an unrealistic

advantage to the filters.

Since the absence of this property makes the pen-test more

difficult than a real attack, this has a high priority among

our future directions. Addressing this involves (1) running

real logs through Camelot in parallel with the pen-testing

Click Filters

Camelot Frontends

Non-production Ads Servers

logs, and (2) giving the pen-tester access to the information

of each real click.

2) R2 Challenges (All Defenses): Currently, Camelot

neither runs the offline detection tools against a simulated

attack, nor filters that are based on queries or conversions.

Also, there is no human reviewer devoted to manually in-

specting suspicious clicks created by the pen-testers. Hence,

even if a penetration tester successfully gets clicks marked

as valid by the online click filters, there is a chance that

these clicks can be detected offline if the attack happens in

the real world.

Implementing these additional filters involves adding

dozens of distributed processes to the already complex

Camelot system. To improve the R2 coverage of Camelot,

we plan to target those features that help us find vul-

nerabilities in the current filters. Enabling query filters is

important to our overall goal and will likely be added in

the future. Similarly, one of our future directions is adding

conversion filters to Camelot. This is not straightforward

since conversions are normally generated on the advertiser’s

website (which contradicts our isolation goal). Therefore, we

need a separate conversion simulation system.

3) R3 Challenges (Real Effects): Besides not having the

conversion information (as discussed in Section III-B2),

another main real effect that is missing from Camelot 1.0

is the effect of ad budget depletion. Roughly, missing this

feature causes the same ads to be shown for a particular

query regardless of the number of times the search result

page has been returned to the pen-tester, or the number of

times the ad has been clicked on during the experiment. To

our filters, the clicks may look less organic in the pen-test

than in a real attack. For example, on a particular query all

clicks may concentrate on the same static set of ads. This

moves away from our goals, since the lack of this feature

makes it harder to defeat the filters than in the real world.

The engineering effort required to simulate a budget server

is non-trivial. The system is large and complex, and it relies

on and interacts with a number of other systems. In practice,

we have not found this to be a large issue in exploring the

attack design space, but we may decide to model budgets

more realistically in the future.

4) V4 Challenges (Virtual Time): Camelot currently does

not support virtual time compression due to some technical

difficulties. First of all, this requires existing filters to support

the concept of virtual time. A pen-testing scenario that

supports the virtual time compression is as follows: a pen-

tester is given the ability to provide timestamps on queries

and clicks, and the filters and the rest of the ad serving

system need to behave according to the virtual time.

An example of a filter that supports virtual time is a simple

filter that involves measuring frequency of traffic on a given

entity over a period of time. Since the pen-testing system is

injecting the traffic at a much faster rate than real time, such

a filter needs to also allow for virtual time to be observed.

Thus, implementing this property is one of our first future

directions since it allows pen-testers to quickly conduct low

volume, long term attacks.

IV. EXPERIENCE WITH CAMELOT

We have been using and maintaining Camelot for over

a year. One of the main challenges has been maintaining

all of the various components of Camelot since we run our

own replicated instances of the frontends and ad servers.

Most of the time, the frontends properly return ads during

a query request, though we’ve had several occasions where

configuration files become broken or the ad servers need

to be updated to the latest production version in order to

continue serving ads.

The Camelot system has been used internally at Google to

conduct penetration tests of the click fraud filters in order

to discover vulnerabilities. In addition, new filters can be

developed and easily run within Camelot. This allows us to

perform regression testing where we can replay old click

logs through Camelot in order to ensure that our filters are

working as well as they did in the past. Camelot can also

be used as part of new filter development to make it a little

easier to create an isolated instance and run realistic tests

against it.

During the summer of 2008, we also invited graduate

students (our co-authors from Stanford and UC Berkeley)

to conduct pen-tests using Camelot for research purposes.

Experiments were conducted deliberately in a black box

manner, to approximate a real-world attack scenario. While

every effort was made to avoid disclosing information about

click fraud signals or detection systems, it is possible that

the pen-testers may have learned some details that they

may not have been exposed otherwise. That said, we do

not believe that any such details were significant enough to

bias or overly impact their approach or the results of their

experiments.

Using Camelot, one pen-tester attempted to reverse en-

gineer the click fraud filters, while the other pen-tester

attempted a series of experiments aimed at ultimately max-

imizing the number of clicks not marked as invalid while

also minimizing resources (e.g., IPs) used. The results of the

reverse-engineering experiment reveal that, while difficult

and time-consuming, various characteristics of Google’s

filters can be identified by a series of carefully designed

experiments if the pen-tester is provided accurate feedback.

The second set of experiments involved 44 experiments over

a period of three months before achieving an attack involving

10K clicks with a low percentage of clicks marked invalid.

Figure 2 shows the percentage of clicks marked invalid per

experiment from the second set of experiments. The vertical

bars in the chart distinguish five ranges of experiments with

similar complexities: experiments 1–8, 9–20, 21–24, 25–

36, and 37–44. The first range of experiments is attacks

involving at most 10 clicks, while the pen-tester was getting

Figure 2. Percentage of clicks marked invalid

familiar with Camelot. The fluctuations of percentage clicks

marked invalid are mainly due to the small amount of

clicks made in these experiments. The second range shows

a gradual increase in percentage of clicks caught as the pen-

tester conducted attacks involving at most 100 clicks. The

third range comprises attacks involving at most 1K clicks. At

this point, the pen-tester was able to refine the clickbot to get

most of the clicks through the filters. The final two ranges

involved at most 5K and 10K clicks, respectively. During

the final experiments, the pen-tester attempted additional

refinements to the clickbot and also placed constraints on

the number of resources to use which led to the fluctuations

in the percentage of clicks caught. As we expected, with

enough effort, these results show that scaling an attack to a

large and valuable number of clicks is feasible.

These pen-testing experiments would not have been pos-

sible without the functionalities provided by Camelot such

as the free virtual resources (e.g., IPs) which allow for

scaling up attacks, and the fast and accurate feedback which

speeds up the attack refinement cycle. Since Camelot is

not accessible to attackers in the real world, it is virtually

impossible for a real attacker to conduct similar test attacks

to discover these vulnerabilities. We have developed new

filters to catch the vulnerabilities that were exposed by these

experiments.

V. RELATED WORK

The research that is related to pen-testing click fraud

filters can be categorized into two classes. The first one

focuses on pen-testing for intrusion detection. The second

class comprises the work done on click fraud detection.

One of the first published works involving pen-testing

was in [4], where the Intrusion Detection Systems (IDSs)

developed under DARPA funding were evaluated by gener-

ating attacks mixed with sanitized live background traffic.

However, due to the privacy and technical challenges of

obtaining and sanitizing the data, as well as inserting the

attacks, the evaluation was done on synthetic traffic that

resembles that of the operational network [5]. The option

of using realistic, instead of real, background traffic and

attacks was criticized in [6]. Among other defects in the

evaluation process, McHugh argued the synthetic data could

bias the evaluation results, especially since attacks that are

unsystematically collected from various sources could be

unrepresentative of real-world attacks. The reader is referred

to [7] for a more complete survey of intrusion detection pen-

testing and benchmarking. The isolation of the pen-testing

exercises has been discussed in [8].

The second category of our related work is the academic

work that focuses on click fraud detection. While academic

researchers have proposed some valuable detection mech-

anisms for click fraud, the lack of long-term access to

live ad serving systems have hindered publishing any tests

conducted on these proposals in a large-scale system. To the

best of our knowledge, this is the first published work that

deals with issues related to pen-testing deployed click fraud

filters.

The body of academic research on click fraud is relatively

small. The significance of the problem has been studied in

[9] that has shown search engines that combat fraud best

have a competitive advantage since advertisers would have

better Return On Investment (ROI). This would in turn, not

only raise the bids on the ads of this broker, but also attract

more advertisers.

Meanwhile, the countermeasures have been the focus of

most of the academic research [10], [11], [12], [13], [14],

[15]. Overall, there have been three main comprehensive

approaches to combat click fraud. The first approach [16],

[17], [14] addresses the problem radically by proposing

tracking surfers using cryptographic primitives, and iden-

tifying human generated click from “legitimate” surfers.

However, the scheme either violates the surfers’ privacy by

identifying them or reduces the problem of click fraud to an

unsolved problem like credit card fraud.

The second approach [18] focused on how to make the

payment system resilient to click fraud by removing its

incentive. In [18], Immorlica et al. proposed a class of CTR

measurement algorithms that converts detecting click fraud

to detecting impression fraud. The approach fails to hinder

fraudsters from simulating huge traffic with low CTR. Thus,

the approach advocates formalizing the problem of detecting

fraudulent traffic as an arms race between fraudsters and

brokers on how much traffic can fraudsters generate without

being detected.

The third approach [19], [13], [20] gives an advantage

to brokers in the arms race. The approach depends on

the correlation between the success of an attack and the

amount of resources at the fraudster’s disposal. The approach

proposes traffic analysis techniques that identify “hot spots”

of traffic between the attacked entities (ads or publishers’

sites) and the relatively limited attacking resources (e.g.,

machines) that are temporarily identified by cookies and IPs.

In [19], [13], [20] traffic analysis techniques were proposed

whose cost is significantly less than the cost incurred on the

fraudsters to circumvent them.

VI. CONCLUSION

Penetration testing a click fraud detection system requires

system designers to think about various factors such as

(1) how to simulate realism, (2) how to ensure isolation

such that no side-effects can impact real advertisers and

publishers, and (3) how to virtualize such that penetration

testers can conduct attacks faster and more efficiently than

real fraudsters can. In this paper, we have enumerated

numerous desirable properties that one might like in a click

fraud pen-testing system, and outlined some of the trade-offs

involved in supporting such properties in a system called

Camelot that has been in use at Google to conduct click

fraud penetration tests.

Camelot allows pen-testers to attack Google’s click fraud

filters in an isolated manner. The Camelot system was used

to allow full-time employees as well as interns to conduct

black box penetration testing experiments.

The results of these tests provide not only insight into

Google’s own filters but also provide insight into the iterative

attack development process that real fraudsters might em-

ploy. The Camelot system has become a practical and useful

platform for click fraud penetration testing within Google.

We hope and expect that search and per-pay-click engines

continue to employ such types of systems to proactively

find vulnerabilities to help defend and improve the return

on investment that advertisers receive, and the revenues that

publishers receive.

ACKNOWLEDGMENTS

We thank Thomas Duebendorfer, Kourosh Gharachorloo,

Zoltan Gyongyi, Yechiel Kimchi, Matt Paduano, and Razvan

Surdulescu for providing helpful feedback.

REFERENCES

[1] Tuzhilin, A., “The Lanes Gifts v. Google Report,” 2006.

[2] N. Daswani, C. Mysen, V. Rao, S. Weis, K. Gharachorloo, and
S. Ghosemajumder, “Online Advertising Fraud,” Crimeware:
Understanding New Attacks and Defenses, 2008.

[3] N. Daswani and M. Stoppelman, “The anatomy of Click-

bot.A,” in HotBots, 2007, p. 11.

[4] R. K. Cunningham, R. P. Lippmann, D. J. Fried,
S. L. Garfinkel, I. Graf, K. R. Kendal, S. E. Webster,

D. Wyschogrod, and M. A. Zissman, “Evaluating Intrusion
Detection Systems without Attacking your Friends: The 1998
DARPA Intrusion Detection Evaluation,” in SANS, 1999.

[5] R. P. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and
K. Das, “Analysis and Results of the 1999 DARPA Off-Line
Intrusion Detection Evaluation,” in RAID, 2000, pp. 162–182.

[6] J. McHugh, “Testing Intrusion Detection Systems: a Critique

of the 1998 and 1999 DARPA Intrusion Detection System
Evaluations as Performed by Lincoln Laboratory,” ACM
Trans. Inf. Syst. Secur., vol. 3, no. 4, pp. 262–294, 2000.

[7] N. Athanasiades, R. Abler, J. Levine, H. Owen, and G. Riley,
“Intrusion Detection Testing and Benchmarking Methodolo-
gies,” in IWIA, 2003, p. 63.

[8] C. Hurley, A. W. Bayles, K. Butler, A. C. John, E. Miller,
and G. M. Phillips, Penetration Tester’s Open Source Toolkit.
Syngress, 2007.

[9] B. Mungamuru and S. Weis, “Competition and Fraud in
Online Advertising Markets,” in FC, 2008, pp. 187–191.

[10] V. Anupam, A. Mayer, K. Nissim, B. Pinkas, and M. Reiter,
“On the Security of Pay-Per-Click and Other Web Advertising
Schemes,” in WWW, 1999, pp. 1091–1110.

[11] D. Klein, “Defending Against the Wily Surfer-Web-based
Attacks and Defenses,” in USENIX ID, 1999, pp. 81–92.

[12] A. Metwally, D. Agrawal, and A. El Abbadi, “Using Associa-
tion Rules for Fraud Detection in Web Advertising Networks,”
in VLDB, 2005, pp. 169–180.

[13] A. Metwally, D. Agrawal, A. El Abbadi, and Q. Zheng, “On
Hit Inflation Techniques and Detection in Streams of Web
Advertising Networks,” in ICDCS, 2007, p. 52.

[14] M. Naor and B. Pinkas, “Secure and Efficient Metering,” in
EUROCRYPT, 1998, pp. 576–590.

[15] L. Zhang and Y. Guan, “Detecting Click Fraud in Pay-Per-
Click Streams of Online Advertising Networks,” in ICDCS,
2008, pp. 77–84.

[16] C. Blundo and S. Cimato, “SAWM: A Tool for Secure and
Authenticated Web Metering,” in SEKE, 2002, pp. 641–648.

[17] A. Juels, S. Stamm, and M. Jakobsson, “Combating Click
Fraud via Premium Clicks,” in USENIX Security Symposium,
2007, pp. 17–26.

[18] N. Immorlica, K. Jain, M. Mahdian, and K. Talwar, “Click
Fraud Resistant Methods for Learning Click-Through Rates,”
in WINE, 2005, pp. 34–45.

[19] A. Metwally, D. Agrawal, and A. El Abbadi, “DETECTIVES:
DETEcting Coalition hiT Inflation attacks in adVertising
nEtworks Streams,” in WWW, 2007, pp. 241–250.

[20] A. Metwally, F. Emekci, D. Agrawal, and A. El Abbadi,
“SLEUTH: Single-pubLisher attack dEtection Using corre-
laTion Hunting,” in VLDB, 2008, pp. 1217–1228.

