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Abstract—It is important for search and pay-per-click en- 

gines to penetration test their click fraud detection systems, in 
order to find potential vulnerabilities and correct them before 
fraudsters can exploit them. In this paper, we describe: (1) some 

goals and desirable qualities of a click fraud penetration testing 
system, based on our experience, and (2) our experiences with 
the challenges of building and using a click fraud penetration 

testing system called Camelot that has been in use at Google. 

 
I. INTRODUCTION 

Click fraud is  the  act  of  clicking  ads  with  fraudulent 

or malicious intent to generate illegitimate revenue or hurt 

competitors. Since online advertising networks act as brokers 

of multi-billion dollar online advertising revenue streams, 

click fraud is a major responsibility and concern. While 

Google needs to be cautious with exposing information 

about its click fraud detection techniques to preserve its 

effectiveness, [1] reports on reasonable countermeasures that 

Google deployed, and in [2], [3], Daswani et al. gives a 

panoramic treatment of the types of click fraud, counter- 

measures, and detection filters that Google employs. 

Click fraud filters mark a click as invalid to not charge the 

advertiser for malicious or poor quality clicks [2]. Determin- 

ing whether a particular click is correctly marked as invalid 

by a set of filters is fundamentally a difficult problem, since 

judging a click as fraudulent depends on the clicker’s intent, 

and it is sometimes impossible to definitively ascertain 

intent. One approach that can be used to measure the false 

negatives of a set of filters (i.e., the unfiltered malicious 

clicks) is to inject artificial clicks into a click stream, run the 

click stream through click filters, and examine how different 

the set of clicks marked invalid is from the set of artificial 

clicks. 

This paper describes the desirable properties of a practical 

click fraud penetration testing (hence referred to as pen- 

testing) system and highlights the challenges of realizing 

such a system. We have built Camelot, a system that has 

been used by the Google Ad Traffic Quality Team to 

conduct isolated click fraud experiments against our online 

detection filters to identify potential vulnerabilities under 

semi-realistic conditions without impacting advertisers and 

§ This work was done while authors were interning at Google, Inc. 

publishers. During pen-testing exercises, Camelot is used to 

simulate novel attacks, proactively find potential vulnerabil- 

ities before malicious external attackers, and correct them 

when necessary. 

Besides conducting penetration tests on click filters, a 

pen-testing system can be used for other purposes, such 

as a regression testing tool during the development of new 

filters. In addition, the pen-testing system may be provided 

to elect advertisers and academic researchers to assess the 

effectiveness of the click fraud filters without revealing their 

implementation details. 

We restrict the  construction  of  the  pen-testing  system 

to a subset of click filters. Some of the filters at Google 

are not suitable for pen-testing, because they take  input 

from offline data sources. Moreover, the click filters are 

just one component of all possible defenses against click 

fraud; other components include various offline automated 

detection tools, as well as human reviewers. 

The organization of this paper is as follows. Section II 

describes desirable requirements of a click fraud pen-testing 

system and Google’s implementation of such a system, 

Camelot. Section III focuses on the challenges of build- 

ing and using click fraud pen-testing systems, including 

challenges specific to Camelot. Section IV describes our 

experience with Camelot. Section V discusses the related 

work, and we conclude in Section VI. 

II. THE GOALS AND PROPERTIES OF CLICK FRAUD 

PENETRATION TESTING SYSTEMS 

A click fraud pen-testing system provides an environ- 

ment for testers to conduct experimental attacks on a click 

fraud detection system, with the main goal of proactively 

finding vulnerabilities in the system before being exploited 

by malicious attackers. By finding security vulnerabilities 

earlier, the click fraud filters can be improved and mali- 

cious attackers have fewer chances of conducting successful 

attacks. Therefore, a desirable pen-testing system should 

include several functionalities. In particular, the system 

should be flexible in emulating attacks at different levels of 

sophistication (flexibility) and be easy to use in conducting 

experiments (simplicity). In addition, for practical reasons, 

a desirable pen-testing system should have no impact on 
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real world entities and traffic, and allow experiments to be 

conducted in an isolated fashion (isolation). 

Emulating an attack scenario includes setting up the 

entities (e.g., the clicking users, ad links to be clicked on, 

content publishers, and advertisers) and the traffic (including 

query and click traffic) among them. A flexible pen-testing 

system allows a pen-tester to realistically emulate an attack 

through properly setting up the parameters of the involved 

entities and traffic, and to conduct controlled experiments by 

tuning the parameters to find vulnerabilities in the click fraud 

detection system. Moreover, the pen-testing system should 

be easy to use, making the entities and traffic (by simulation) 

available to the pen-testers and provide fast feedback on the 

successful rate of the experiments to shorten the experiment 

cycles. 

To achieve the flexibility and simplicity of a practical pen- 

testing system, we identify a list of properties in Table I. We 

group these properties into two categories: (1) “Real,” the 

properties needed to simulate attacks in a realistic manner, 

and (2) “Virtual,” those specifically designed to facilitate 

the pen-testing experiments. A general characteristic of the 

properties in Table I is that no property should make it harder 

for a pen-tester to conduct an experimental attack compared 

to conducting the same attack in reality, nor makes detection 

of the bad traffic any easier by the filters. The list is not 

intended to be exhaustive, and each of these properties is 

explained in detail in the remainder of this section. 

For a practical system, the Isolation property (V1) is 

considered a high priority among the properties listed in 

Table I. In practice, it is crucial for pen-testing experiments 

not to interfere with the real-world advertisers and traffic. 

For example, the experimental clicks of the pen-testing 

system neither should have an impact on the budget of real- 

world advertisers, nor should the clicks appear in real-world 

advertisers’ log files. Similarly, injecting experimental clicks 

in real traffic should neither consume production resources, 

nor increase latency in processing real traffic. Furthermore, 

our production online filters (and all components of our ad 

system) should not consider injected traffic when making 

decisions. 

Since the main goal of the pen-testing system is to find 

vulnerabilities, virtual properties that make it easier for pen- 

testers to conduct experiments quickly are also desirable to 

have. These properties include fast feedback, ability to run 

simultaneous experiments, and virtualizing some resources 

such as IPs for instance. 

A. Properties for Real World Effects 

For a pen-testing system to simulate all possible attacks 

that can be conducted in the real world, it should have func- 

tionalities that simulate activities happening in the real world 

and should provide pen-testers with information that real 

attackers can gain. We discuss several real-world properties 

for a pen-testing system in this section. 

R1 Traffic Examinations: In the real world, an attacker 

may have control on real traffic from one or more machines 

by owning or compromising them. There are two major 

benefits to having access to real traffic: (1) it allows attackers 

to learn actual usage patterns, and (2) it enables the ability to 

“piggyback” the fraudulent traffic on top of actual, legitimate 

traffic. Knowledge of the normal traffic patterns enables the 

attacker to generate fraudulent traffic that mimics normal 

usage. With access to a single compromised machine, an 

attacker is given a real user’s history and future traffic, use 

of a real browser, real IP address, etc. With access to many 

compromised machines, an attacker is additionally given a 

real distribution of machine and user types. A pen-testing 

system should provide this traffic pattern information to the 

pen-testers and should allow mixing of organic traffic with 

the artificial traffic. 

For the types of attacks that an attacker can conduct with 

a compromised machine, an attacker can execute attacks 

that depend on user behavior, simultaneously borrowing 

distributions such as query and timing and outputting cover 

traffic. Moreover, the attacker could “piggyback” clicks, that 

is, inject fraudulent clicks when users perform real queries 

and clicks. 

R2 All Defenses: To be most realistic, a pen-tester’s 

attack should face all the defenses that a real attacker 

would face.  Besides  online  click  filters,  the  defenses  of 

a typical ad network provider usually also include query 

and conversion filters, offline automated detection tools, and 

human reviewers. Depending on the scope of the penetration 

testing, a pen-testing system should provide the defense 

components to be tested. However, many of these may be 

difficult or impractical to run against for penetration testing. 

In this study, we focus on pen-testing a subset of the online 

click filters. 

R3 Real Effects: In the real world, a change in traffic pat- 

tern (e.g., receiving fraudulent traffic) usually triggers real- 

time effects on the ad serving network, as well as long-term 

effects on the advertisers and the publishers. For instance, 

on an ad serving network, the additional fraudulent traffic 

consumes an advertiser’s budget in real-time and may trigger 

the ad serving network to stop serving ads if the budget 

is depleted. At a larger time frame, the fraudulent traffic 

may trigger an advertiser to change its bidding strategy or 

a publisher to change the layout of the content pages. It 

is desirable for a pen-testing system to simulate these real 

effects, so that the impact of an experimental attack can be 

evaluated realistically. 

Lacking real effect simulation may bias the outcome of 

an attack. For example, without simulating the budget effect, 

the ad serving system will continue to present the same set 

of ads for the same query (i.e., no ad cycling) and limit an 

attacker to a small set of ads to attack. Attacking a small 

set of ads creates an unrealistic concentration of fraudulent 

traffic, making the experimental attack easier to catch than 



Table I 

PROPERTIES OF A PEN-TESTING SYSTEM 

 
  REAL 

Number Name Description 

R1 Traffic Examinations “Sees” traffic from a real network connection. 
R2 All Defenses All production defenses are tested against. 
R3 Real Effects Real effects on advertisers and users 
R4 All Advertisers/Publishers Has access to all advertisers/publishers. 

 

VIRTUAL 

Number Name Description 

V1 Isolation Does not influence real advertisers, 

  publishers, and users. 
V2 Resource Emulation Provide virtual resources to conduct more 

  powerful attacks. 
V3 Fast and Accurate Feedback Fast feedback loop with detailed information. 
V4 Virtual Time Compression Speed up simulation time of attack. 
V5 Simultaneous Experiments Runs multiple experiments simultaneously. 
V6 Traffic Composition Total control of traffic writes. 

 

 

in the real world. On the other hand, without the budget- 

ing effect, a successful experimental attack potentially can 

achieve unlimited revenue from a single ad and erroneously 

inflate the actual impact of the attack in the real world. If 

the goal is to identify potential vulnerabilities in the filters, 

it is more important to make sure pen-testing attacks are 

no easier to detect the realistic ones (e.g., due to lack of 

ad cycling). The fact that some attacks may have greater 

success than in the real world is less of an issue. 

R4 All Advertisers and Publishers: In the real world, an 

attacker can target any publisher and click on any ad in any 

content page. To be able to explore the full design space, 

a pen-tester must be able to attack any actual advertiser on 

any publisher site. Limiting a pen-tester to a small set of 

advertisers and publishers can make an experimental attack 

easier to catch (due to the unrealistic concentration of traffic 

as discussed for R3). 

B. Properties for Virtual Effects 

As mentioned in the beginning of this section, a pen- 

testing system should make the pen-testing experiments easy 

and safe to conduct with no impact on the real world traffic 

and entities (the “simplicity” and “isolation” functionalities). 

In this section, we discuss these additional “Virtual” prop- 

erties in detail. 

V1 Isolation: In practice, a pen-tester’s experimental 

attack should not impact any real advertisers, publishers, 

or users in any way. Additionally, pen-testing should not 

impose unnecessary impact on our production system. In 

particular, any click, query, and conversion made by the 

pen-tester should not appear in production logs and should 

not affect production filters. Any lack  of  isolation  may 

also have financial and legal implications. We made this 

property the top priority when designing our “Camelot” 

system (described in Section II-C). 

V2 Resource Emulation: Resources that are relevant to a 

pen-testing experiment include machine IPs (for establishing 

valid TCP/IP connections) and client side state (e.g., cook- 

ies). To simplify a pen-tester’s job in conducting arbitrary 

attacks, it is desirable for a pen-testing system to provide 

virtual resources and allow the pen-tester to focus on finding 

vulnerabilities. With this property, a pen-tester can also 

design attack schemes which may not be as easy to conduct 

in the real world. For instance, an experiment involving a 

botnet of 10K machines should be easily conducted in the 

pen-testing system, without needing to obtain access to 10K 

physical machines as in the real world. 

V3 Fast and Accurate Feedback: Another property that 

makes iterative experiments simpler is fast and accurate 

feedback, especially in the form of the number of invalid 

clicks detected from the filters. Compared to the real world 

scenario, a pen-testing system can provide more timely 

feedback to the pen-tester. Moreover, feedback to the pen- 

testers can be more accurate and detailed (all the way to 

providing results at the click-by-click level). 

In the real world, ad networks like Google have worked 

very hard to prevent malicious attackers from obtaining feed- 

back pertaining to their attacks. For an attacker who targets 

Google search ads (e.g., to hurt competitor advertisers), one 

way for the attacker to obtain feedback is to  focus  her 

attack on a particular ad until depleting the budget of the 

ad (i.e., until the particular ad is not served  by  Google 

when given the same search keywords). For  an  attacker 

who targets content ads (e.g.,  to  make  money  directly), 

the attacker can join the ad network as a publisher (e.g., 

Google’s AdSense for Content program) and conduct attacks 

on her own content pages. The feedback of the content ad 

attack can be obtained from the reports that the ad network 

provides to the publisher (same as the attacker in this case). 

Comparing  the  feedback  for  these  two  kinds  of  attacks, 



the feedback for search ad attacks is ambiguous (e.g., a 

large budget may lead to an ad to continue to show, or 

budget may have been depleted by organic traffic) and only 

gives the attacker a coarseness of the success of the attack. 

The feedback for content ad attacks is more detailed, but 

ad networks can also take steps to dampen the feedback 

information (for example, by providing aggregated statistics 

to publishers). 

V4 Virtual Time Compression: To allow pen-testers to 

conduct more iterations of pen-testing to find vulnerabilities, 

it is necessary for the pen-testing system to speed up the 

simulation time of an experimental attack. In particular, the 

simulation time should be shorter than the time frame of 

an attack in real world. For example, it is impractical for a 

pen-tester to spend three months to conduct an experimental 

attack that spans three months. We call this property of pen- 

testing systems the “virtual time compression” property. 

V5 Simultaneous  Experiments:  A  practical  feature  for 

a pen-testing system is to allow a pen-tester to conduct 

simultaneous, isolated attacks in order to quickly iterate 

through different experiments. This is not possible in the 

real world, since the  clicks  for  two  independent  attacks 

on production Google Search are interleaved in the same 

set of logs, possibly causing interactions during click fraud 

filtering. Isolation, and the ability to replicate instances of 

the Camelot system, makes it easy for us to provide this 

ability. 

V6 Traffic Composition: To permit more comprehensive 

exploration of the design space of attacks, a pen-tester 

should be allowed complete control over all traffic that 

reaches the ad network during the experiment, including 

creation or deletion of legitimate background traffic. For 

instance, if a pen-tester is simulating a 100-machine botnet, 

the simulation environment should allow her to inject traffic 

patterns of other uncompromised machines as well. In 

addition, having this property gives a pen-tester ability to 

conduct controlled experiments, by tuning particular traffic 

and studying the corresponding impact. 

This property provides a pen-tester more control than what 

an attacker has in reality, since a pen-tester can fully control 

traffic from all sources, while a real attacker can only alter 

the traffic of machines under her control. This property is 

closely coupled with the R1 property where artificial traffic 

can be piggybacked on top of legitimate traffic. However, 

this does not belong to the “Real” category since an attacker 

cannot prohibit traffic from uncompromised machines from 

reaching the ad network. 

With the properties listed above, we can compare the envi- 

ronment a real attacker faces with the environment provided 

by our current implementation of Camelot (Camelot 1.0 is 

discussed in Section II-C). Table II summarizes the differ- 

ences between the two environments, with respect to the 

properties that we listed above. Section III-B discusses the 

challenges of supporting the real features that are currently 

Table II 

PROPERTIES OF A REAL ATTACK AND CAMELOT 1.0 

 

Environment Supported Not Supported 
 

Real Attack R1, R2, R3, R4 V1, V2, V3, V4, V5, V6 
Camelot 1.0 R4, V1, V2, V3, V5, V6 R1, R2, R3, V4 

 

 

 

 

not fully supported in Camelot 1.0 and what is required to 

support them. 
 

C. Camelot: Google’s Pen-Testing System 

In this section, we explain the design and properties of 

Camelot 1.0, Google’s current implementation of an isolated 

pen-testing system. There are two general strategies we used 

when we designed Camelot 1.0: (1) Achieving isolation via 

system replication, and (2) achieving flexibility via a two- 

step procedure (i.e., a click generation step followed by a 

filtering step). We discuss these design decisions in more 

detail in this section. 

1) Architecture: Of all the properties for a click fraud 

pen-testing system, isolation is the main property that mo- 

tivated the design of Camelot to prevent any unwanted 

effects on real users, advertisers, and publishers. To achieve 

isolation, we replicate instances of the ad servers and filter- 

ing systems. We also replicate the frontends for requesting 

Google Search ads or AdSense for Content ads. Thus, the 

Camelot frontends provide an interface to pen-testers that is 

the same to real attackers. 

As seen in Figure 1, pen-testers can develop clickbots 

and run them against Camelot’s frontends while treating the 

click fraud detection system as a black box. Camelot logs 

all clicks on ads and blocks redirects to the advertiser’s site 

to avoid affecting the advertiser’s server logs. After running 

an attack, the ad click logs are saved and run through the 

click filters. Finally, a report that lists the total number of 

clicks and invalid clicks is generated. Thus, unlike the real 

world system which processes clicks in real time, Camelot 

operates in a batch mode with two steps: all clicks are 

generated first in Camelot and then run through the filters. 

In addition, Camelot also provides penetration testers access 

to the following virtual abilities to make pen-testing much 

easier: 

(a) Arbitrary  IP  addresses  can  be  specified  on  both  the 

queries and ad clicks. 

(b) Integrity checks are disabled on certain data in the HTTP 

request such as cookies. 

2) Properties of Camelot: Camelot provides several ad- 

vantages that makes pen-testing safer and easier than con- 

ducting a real world attack. The main advantage of the 

Camelot system is that it provides isolation for both real 

advertisers and publishers from click fraud experiments 

(because of the use of separate non-production ad servers). 

As a result, all of the pen-tester’s clicks and queries go in 
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Figure 1.   Camelot Pipeline 

 

 

their own logs and are never logged with real traffic, and 

thus are never processed by production filters. Furthermore, 

the use of non-production systems avoids overloading the 

production systems, further isolating production from click 

fraud experiments. Because of isolation, any ad may be 

targeted in an attack. 

In addition, pen-testers using Camelot can emulate re- 

sources such as arbitrary IP addresses. Some additional 

advantages of the Camelot system include immediate and 

accurate feedback as well as the ability to parallelize exper- 

iments. 

There are a few drawbacks of the current Camelot imple- 

mentation due to technical limitations. The first disadvantage 

is that Camelot 1.0 only runs a subset of the online filters, 

namely the click filters, rather than all possible defenses 

(e.g., query and conversion filters). Next, clicks generated 

with Camelot 1.0 are processed by the filters in isolation 

rather than being merged with real clicks from that same 

time period. One remaining disadvantage is that it is not 

possible to actually deplete an advertiser’s budget because 

we did not implement budgeting effects for use by Camelot 

1.0’s ad servers. Section III-B discusses in  more  detail 

how these technical limitations prevent Camelot 1.0 from 

achieving a number of our desired properties. However, even 

with these disadvantages, the combination of isolation and 

virtual abilities makes Camelot 1.0 a useful pen-testing tool. 

III. CHALLENGES 

In this section, we explore the challenges of pen-testing, 

including fundamental problems that exist in all pen-testing 

systems, and problems specific to Camelot. The challenges 

are followed by discussions on interesting and subtle aspects 

of click fraud pen-testing. 

A. Isolation versus Realism 

As we outlined in the previous sections, desired properties 

of a pen-testing system are sometimes mutually contradic- 

tory. Any pen-testing system’s design, including Camelot’s, 

 

must determine which set of tradeoffs to make between these 

contradictory properties. 

In particular, isolation of the pen-testing system from real 

traffic is often in contradiction with the realism in interacting 

with advertisers, publishers, and users. Take for example 

the ad auction system. For realism, we would like to use 

the production auction servers so the pen-tester can see real-

world ads. However, the experimental clicks that are 

generated affect the production click-through rate, which 

violates our isolation invariant. Any injected traffic from 

experiments on the pen-testing system should not have any 

effect on real world traffic, users and advertisers. 

On the other hand, without any interaction with the real 

advertisers and publishers, the pen-testing system is less 

realistic, since it is missing the real-time reactions from the 

advertisers and publishers. For instance, an advertiser may 

increase the ad campaign budget, or a publisher may change 

the ads layout on a site, in response to the additional clicks 

inserted by the penetration tests. However, since the absence 

of these effects does not make it more difficult to defeat the 

filters, the pen-testing system still achieves our goals. 

 

B. Practical Issues of Camelot 1.0 

As we explained in the previous section, there are certain 

features that Camelot 1.0 is missing. In this section, we 

discuss all of the properties that we do not support along 

with challenges in addressing these in future systems. 

1) R1 Challenges (Traffic Examinations): Clicks are fil- 

tered in isolation by Camelot, unlike a real attack where they 

would be hidden amongst a far larger amount of legitimate 

cover traffic. The fact that the only clicks being processed by 

the filters are from the simulated attack gives an unrealistic 

advantage to the filters. 

Since the absence of this property makes the pen-test more 

difficult than a real attack, this has a high priority among 

our future directions. Addressing this involves (1) running 

real logs through Camelot in parallel with the pen-testing 

Click Filters 

Camelot Frontends 

Non-production Ads Servers 



logs, and (2) giving the pen-tester access to the information 

of each real click. 

2) R2 Challenges (All Defenses): Currently, Camelot 

neither runs the offline detection tools against a simulated 

attack, nor filters that are based on queries or conversions. 

Also, there is no human reviewer devoted to manually in- 

specting suspicious clicks created by the pen-testers. Hence, 

even if a penetration tester successfully gets clicks marked 

as valid by the online click filters, there is a chance that 

these clicks can be detected offline if the attack happens in 

the real world. 

Implementing these additional filters involves adding 

dozens of distributed processes to the already complex 

Camelot system. To improve the R2 coverage of Camelot, 

we plan to target those features that help us find vul- 

nerabilities in the current filters. Enabling query filters is 

important to our overall goal and will likely be added in 

the future. Similarly, one of our future directions is adding 

conversion filters to Camelot. This is not straightforward 

since conversions are normally generated on the advertiser’s 

website (which contradicts our isolation goal). Therefore, we 

need a separate conversion simulation system. 

3) R3 Challenges (Real Effects): Besides not having the 

conversion information (as discussed in Section III-B2), 

another main real effect that is missing from Camelot 1.0 

is the effect of ad budget depletion. Roughly, missing this 

feature causes the same ads to be shown for a particular 

query regardless of the number of times the search result 

page has been returned to the pen-tester, or the number of 

times the ad has been clicked on during the experiment. To 

our filters, the clicks may look less organic in the pen-test 

than in a real attack. For example, on a particular query all 

clicks may concentrate on the same static set of ads. This 

moves away from our goals, since the lack of this feature 

makes it harder to defeat the filters than in the real world. 

The engineering effort required to simulate a budget server 

is non-trivial. The system is large and complex, and it relies 

on and interacts with a number of other systems. In practice, 

we have not found this to be a large issue in exploring the 

attack design space, but we may decide to model budgets 

more realistically in the future. 

4) V4 Challenges (Virtual Time): Camelot currently does 

not support virtual time compression due to some technical 

difficulties. First of all, this requires existing filters to support 

the concept of virtual time. A pen-testing scenario that 

supports the virtual time compression is as follows: a pen- 

tester is given the ability to provide timestamps on queries 

and clicks, and the filters and the rest of the ad serving 

system need to behave according to the virtual time. 

An example of a filter that supports virtual time is a simple 

filter that involves measuring frequency of traffic on a given 

entity over a period of time. Since the pen-testing system is 

injecting the traffic at a much faster rate than real time, such 

a filter needs to also allow for virtual time to be observed. 

Thus, implementing this property is one of our first future 

directions since it allows pen-testers to quickly conduct low 

volume, long term attacks. 

IV. EXPERIENCE WITH CAMELOT 

We have been using and maintaining Camelot for over 

a year. One of the main challenges has been maintaining 

all of the various components of Camelot since we run our 

own replicated instances of the frontends and ad servers. 

Most of the time, the frontends properly return ads during 

a query request, though we’ve had several occasions where 

configuration files become broken or the ad servers need 

to be updated to the latest production version in order to 

continue serving ads. 

The Camelot system has been used internally at Google to 

conduct penetration tests of the click fraud filters in order 

to discover vulnerabilities. In addition, new filters can be 

developed and easily run within Camelot. This allows us to 

perform regression testing where we can replay old click 

logs through Camelot in order to ensure that our filters are 

working as well as they did in the past. Camelot can also 

be used as part of new filter development to make it a little 

easier to create an isolated instance and run realistic tests 

against it. 

During the summer of 2008, we also invited graduate 

students (our co-authors from Stanford and UC Berkeley) 

to conduct pen-tests using Camelot for research purposes. 

Experiments were conducted deliberately in a black box 

manner, to approximate a real-world attack scenario. While 

every effort was made to avoid disclosing information about 

click fraud signals or detection systems, it is possible that 

the pen-testers may have learned some details  that  they 

may not have been exposed otherwise. That said, we do 

not believe that any such details were significant enough to 

bias or overly impact their approach or the results of their 

experiments. 

Using Camelot, one pen-tester attempted to reverse en- 

gineer  the  click  fraud  filters,  while  the  other  pen-tester 

attempted a series of experiments aimed at ultimately max- 

imizing the number of clicks not marked as invalid while 

also minimizing resources (e.g., IPs) used. The results of the 

reverse-engineering experiment reveal that, while difficult 

and  time-consuming,  various  characteristics  of  Google’s 

filters can be identified by a series of carefully designed 

experiments if the pen-tester is provided accurate feedback. 

The second set of experiments involved 44 experiments over 

a period of three months before achieving an attack involving 

10K clicks with a low percentage of clicks marked invalid. 

Figure 2 shows the percentage of clicks marked invalid per 

experiment from the second set of experiments. The vertical 

bars in the chart distinguish five ranges of experiments with 

similar complexities: experiments 1–8, 9–20, 21–24, 25– 

36, and 37–44. The first range of experiments is attacks 

involving at most 10 clicks, while the pen-tester was getting 



 

 
 

Figure 2.   Percentage of clicks marked invalid 
 

 

familiar with Camelot. The fluctuations of percentage clicks 

marked invalid are mainly due to the small amount  of 

clicks made in these experiments. The second range shows 

a gradual increase in percentage of clicks caught as the pen- 

tester conducted attacks involving at most 100 clicks. The 

third range comprises attacks involving at most 1K clicks. At 

this point, the pen-tester was able to refine the clickbot to get 

most of the clicks through the filters. The final two ranges 

involved at most 5K and 10K clicks, respectively. During 

the final experiments, the pen-tester attempted additional 

refinements to the clickbot and also placed constraints on 

the number of resources to use which led to the fluctuations 

in the percentage of clicks caught. As we expected, with 

enough effort, these results show that scaling an attack to a 

large and valuable number of clicks is feasible. 

These pen-testing experiments would not have been pos- 

sible without the functionalities provided by Camelot such 

as the free virtual resources (e.g., IPs) which allow for 

scaling up attacks, and the fast and accurate feedback which 

speeds up the attack refinement cycle. Since Camelot is 

not accessible to attackers in the real world, it is virtually 

impossible for a real attacker to conduct similar test attacks 

to discover these vulnerabilities. We have developed new 

filters to catch the vulnerabilities that were exposed by these 

experiments. 

V. RELATED WORK 

The research that is related to pen-testing click fraud 

filters can be categorized into two classes. The first one 

focuses on pen-testing for intrusion detection. The second 

class comprises the work done on click fraud detection. 

One of the first published works involving pen-testing 

was in [4], where the Intrusion Detection Systems (IDSs) 

developed under DARPA funding were evaluated by gener- 

ating attacks mixed with sanitized live background traffic. 

However, due to the privacy and technical challenges of 

obtaining and sanitizing the data, as well as inserting the 

attacks, the evaluation was done on synthetic traffic that 

resembles that of the operational network [5]. The option 

of using realistic, instead of real, background traffic and 

attacks was criticized in [6]. Among other defects in the 

evaluation process, McHugh argued the synthetic data could 

bias the evaluation results, especially since attacks that are 

unsystematically collected from various sources could be 

unrepresentative of real-world attacks. The reader is referred 

to [7] for a more complete survey of intrusion detection pen- 

testing and benchmarking. The isolation of the pen-testing 

exercises has been discussed in [8]. 

The second category of our related work is the academic 

work that focuses on click fraud detection. While academic 

researchers have proposed some valuable detection mech- 

anisms for click fraud, the lack  of  long-term  access  to 

live ad serving systems have hindered publishing any tests 

conducted on these proposals in a large-scale system. To the 

best of our knowledge, this is the first published work that 

deals with issues related to pen-testing deployed click fraud 

filters. 

The body of academic research on click fraud is relatively 

small. The significance of the problem has been studied in 

[9] that has shown search engines that combat fraud best 

have a competitive advantage since advertisers would have 

better Return On Investment (ROI). This would in turn, not 

only raise the bids on the ads of this broker, but also attract 

more advertisers. 

Meanwhile, the countermeasures have been the focus of 

most of the academic research [10], [11], [12], [13], [14], 

[15]. Overall, there have been three main comprehensive 

approaches to combat click fraud. The first approach [16], 

[17], [14] addresses the problem radically by proposing 

tracking surfers using cryptographic primitives, and iden- 

tifying human generated click from “legitimate” surfers. 

However, the scheme either violates the surfers’ privacy by 

identifying them or reduces the problem of click fraud to an 

unsolved problem like credit card fraud. 

The second approach [18] focused on how to make the 

payment system resilient to click fraud by removing its 

incentive. In [18], Immorlica et al. proposed a class of CTR 

measurement algorithms that converts detecting click fraud 

to detecting impression fraud. The approach fails to hinder 

fraudsters from simulating huge traffic with low CTR. Thus, 

the approach advocates formalizing the problem of detecting 

fraudulent traffic as an arms race between fraudsters and 

brokers on how much traffic can fraudsters generate without 

being detected. 

The third approach [19], [13], [20] gives an advantage 

to brokers in the arms  race.  The  approach  depends  on 

the correlation between the success of an attack and the 

amount of resources at the fraudster’s disposal. The approach 

proposes traffic analysis techniques that identify “hot spots” 

of traffic between the attacked entities (ads or publishers’ 

sites) and the relatively limited attacking resources (e.g., 

machines) that are temporarily identified by cookies and IPs. 

In [19], [13], [20] traffic analysis techniques were proposed 

whose cost is significantly less than the cost incurred on the 

fraudsters to circumvent them. 



VI. CONCLUSION 

Penetration testing a click fraud detection system requires 

system  designers  to  think  about  various  factors  such  as 

(1) how to simulate realism, (2) how to ensure isolation 

such that no side-effects can impact real advertisers and 

publishers, and (3) how to virtualize such that penetration 

testers can conduct attacks faster and more efficiently than 

real fraudsters can. In this paper, we have enumerated 

numerous desirable properties that one might like in a click 

fraud pen-testing system, and outlined some of the trade-offs 

involved in supporting such properties in a system called 

Camelot that has been in use at Google to conduct click 

fraud penetration tests. 

Camelot allows pen-testers to attack Google’s click fraud 

filters in an isolated manner. The Camelot system was used 

to allow full-time employees as well as interns to conduct 

black box penetration testing experiments. 

The results of these tests provide not only insight into 

Google’s own filters but also provide insight into the iterative 

attack development process that real fraudsters might em- 

ploy. The Camelot system has become a practical and useful 

platform for click fraud penetration testing within Google. 

We hope and expect that search and per-pay-click engines 

continue to employ such types of systems to proactively 

find vulnerabilities to help defend and improve the return 

on investment that advertisers receive, and the revenues that 

publishers receive. 
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